10 research outputs found

    Non-linear feedback effects in coupled Boson-Fermion systems

    Full text link
    We address ourselves to a class of systems composed of two coupled subsystems without any intra-subsystem interaction: itinerant Fermions and localized Bosons on a lattice. Switching on an interaction between the two subsystems leads to feedback effects which result in a rich dynamical structure in both of them. Such feedback features are studied on the basis of the flow equation technique - an infinite series of infinitesimal unitary transformations - which leads to a gradual elimination of the inter-subsystem interaction. As a result the two subsystems get decoupled but their renormalized kinetic energies become mutually dependent on each other. Choosing for the inter - subsystem interaction a charge exchange term (the Boson-Fermion model) the initially localized Bosons acquire itinerancy through their dependence on the renormalized Fermion dispersion. This latter evolves from a free particle dispersion into one showing a pseudogap structure near the chemical potential. Upon lowering the temperature both subsystems simultaneously enter a macroscopic coherent quantum state. The Bosons become superfluid, exhibiting a soundwave like dispersion while the Fermions develop a true gap in their dispersion. The essential physical features described by this technique are already contained in the renormalization of the kinetic terms in the respective Hamiltonians of the two subsystems. The extra interaction terms resulting in the process of iteration only strengthen this physics. We compare the results with previous calculations based on selfconsistent perturbative approaches.Comment: 14 pages, 16 figures, accepted for publication in Phys. Rev.

    Universal asymptotic behavior in flow equations of dissipative systems

    Full text link
    Based on two dissipative models, universal asymptotic behavior of flow equations for Hamiltonians is found and discussed. Universal asymptotic behavior only depends on fundamental bath properties but not on initial system parameters, and the integro-differential equations possess an universal attractor. The asymptotic flow of the Hamiltonian can be characterized by a non-local differential equation which only depends on one parameter - independent of the dissipative system or truncation scheme. Since the fixed point Hamiltonian is trivial, the physical information is completely transferred to the transformation of the observables. This yields a more stable flow which is crucial for the numerical evaluation of correlation functions. Furthermore, the low energy behavior of correlation functions is determined analytically. The presented procedure can also be applied if relevant perturbations are present as is demonstrated by evaluating dynamical correlation functions for sub-Ohmic environments. It can further be generalized to other dissipative systems.Comment: 15 pages, 9 figures; to appear in Phys. Rev.

    Spin Reduction Transition in Spin-3/2 Random Heisenberg Chains

    Get PDF
    Random spin-3/2 antiferromagnetic Heisenberg chains are investigated using an asymptotically exact renormalization group. Randomness is found to induce a quantum phase transition between two random-singlet phases. In the strong randomness phase the effective spins at low energies are S_eff=3/2, while in the weak randomness phase the effective spins are S_eff=1/2. Separating them is a quantum critical point near which there is a non-trivial mixture of S=1/2, S=1, and S=3/2 effective spins at low temperatures.Comment: 4 pages, 3 figures. Typos correcte

    On the Geodesic Nature of Wegner's Flow

    Full text link
    Wegner's method of flow equations offers a useful tool for diagonalizing a given Hamiltonian and is widely used in various branches of quantum physics. Here, generalizing this method, a condition is derived, under which the corresponding flow of a quantum state becomes geodesic in a submanifold of the projective Hilbert space, independently of specific initial conditions. This implies the geometric optimality of the present method as an algorithm of generating stationary states. The result is illustrated by analyzing some physical examples.Comment: 8 pages, no figures. The version published in Foundations of Physic

    Real-Time-RG Analysis of the Dynamics of the Spin-Boson Model

    Full text link
    Using a real-time renormalization group method we determine the complete dynamics of the spin-boson model with ohmic dissipation for coupling strengths α≲0.1−0.2\alpha\lesssim 0.1-0.2. We calculate the relaxation and dephasing time, the static susceptibility and correlation functions. Our results are consistent with quantum Monte Carlo simulations and the Shiba relation. We present for the first time reliable results for finite cutoff and finite bias in a regime where perturbation theory in α\alpha or in tunneling breaks down. Furthermore, an unambigious comparism to results from the Kondo model is achieved.Comment: 4 pages, 5 figures, 1 tabl

    Criticality of the Mean-Field Spin-Boson Model: Boson State Truncation and Its Scaling Analysis

    Full text link
    The spin-boson model has nontrivial quantum phase transitions at zero temperature induced by the spin-boson coupling. The bosonic numerical renormalization group (BNRG) study of the critical exponents β\beta and δ\delta of this model is hampered by the effects of boson Hilbert space truncation. Here we analyze the mean-field spin boson model to figure out the scaling behavior of magnetization under the cutoff of boson states NbN_{b}. We find that the truncation is a strong relevant operator with respect to the Gaussian fixed point in 0<s<1/20<s<1/2 and incurs the deviation of the exponents from the classical values. The magnetization at zero bias near the critical point is described by a generalized homogeneous function (GHF) of two variables τ=α−αc\tau=\alpha-\alpha_{c} and x=1/Nbx=1/N_{b}. The universal function has a double-power form and the powers are obtained analytically as well as numerically. Similarly, m(α=αc)m(\alpha=\alpha_{c}) is found to be a GHF of ϵ\epsilon and xx. In the regime s>1/2s>1/2, the truncation produces no effect. Implications of these findings to the BNRG study are discussed.Comment: 9 pages, 7 figure

    Truncation errors in self-similar continuous unitary transformations

    No full text
    Effects of truncation in self-similar continuous unitary transformations (S-CUT) are estimated rigorously. We find a formal description via an inhomogeneous flow equation. In this way, we are able to quantify truncation errors within the framework of the S-CUT and obtain rigorous error bounds for the ground state energy and the highest excited level. These bounds can be lowered exploiting symmetries of the Hamiltonian. We illustrate our approach with results for a toy model of two interacting hard-core bosons and the dimerized S=1/2 Heisenberg chain. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011
    corecore